Compact waves in microscopic nonlinear diffusion
نویسندگان
چکیده
منابع مشابه
Compact waves in microscopic nonlinear diffusion.
We analyze the spread of a localized peak of energy into vacuum for nonlinear diffusive processes. In contrast with standard diffusion, the nonlinearity results in a compact wave with a sharp front separating the perturbed region from vacuum. In d spatial dimensions, the front advances as t^{1/(2+da)} according to hydrodynamics, with a the nonlinearity exponent. We show that fluctuations in the...
متن کاملTravelling waves in nonlinear diffusion-convection-reaction
The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the study of a singular nonlinear integral equation. This article is devoted to demonstrating how this c...
متن کاملNonlinear propagation of spin waves in microscopic magnetic stripes.
We have studied experimentally with high spatial and temporal resolution propagation of intense spin waves in microscopic Permalloy stripes. We show that the nonlinearity of the spin system of metallic magnetic films together with microscopic-scale confinement effects lead to an anomalous nonlinear magnetic dynamics, such as a nonlinear spatial self-modulation of spin waves characterized by the...
متن کاملReaction-diffusion Systems and Nonlinear Waves
The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne, Hurd, and Kenkre (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation...
متن کاملReaction-diffusion waves with nonlinear boundary conditions
A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method. 1. Formulation of the problem. Reaction-diffusion problems with nonlinear boundary conditions arise in various applications. In physiology, such problems describe in particular development of atheroscle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.85.060103